INTRODUCTION
The first three laws of techonomics provide a foundation for analyzing other developments
currently shaping our society. When two or more of the first laws combine
to support an emerging endeavor, that endeavor will likely become economically
viable and find widespread adoption in the future. We are now seeing several
endeavors being shaped into techonomic trends because they are highly favored by
these laws. These techonomic developments are active in all four sides of the
organizational square: energy, computation, communications, and community. This
chapter discusses the marquee trends anticipated in the next two decades categorized
by the organizational square and specific technology developments to watch as trend
leaders (see Chapter 9 for techonomic trends in the more distant future).
ENERGY: JOURNEY TO RENEWABLE
ENERGY RESOURCES
To understand contemporary techonomic effects on the direction of society, one must
first understand their effects on energy. It was steam power that ushered in the
Industrial Age, replacing the animate labor of the Agricultural Age with machine
power. The Industrial Age rapidly developed based on fossil fuels — a nonrenewable
source — magnifying our muscle. Society flourished materially, but the resulting
pollution from combustion of finite fossil fuel reserves raises serious energy production
questions in the postindustrial era. Answers to energy questions must be
based on a holistic picture: technology, economics, politics, the environment, and
society.
The key question to answer is this: What is acceptable risk for provision of
energy? The way each nation/society answers this question over the next decade
will set the course for their economic viability over the next 50 years. This is because
it takes a long time to design and construct major power generating facilities, and
worldwide competition for energy resources is increasing. Intelligent national leaders
recognize the need to plan and develop energy generation capacity before
crisis arrives rather than waiting for catastrophic shortages that demand emergency
measures.
Societies need energy to function, and twenty-first-century societies worldwide
need energy in increasing quantities to support improving standards of living. While
conservation efforts are laudable, society can no more save its way out of an energy
need than an individual can starve his/her way out of a nutritional need. Individuals
function on food, societies on energy. Remove energy, and the standard of living is
instantly diminished (remember what happens when we are without electricity for
an hour, day, week, longer). This section considers various avenues of energy
production readily at hand or eminent, not futuristic possibilities with no time
horizon for their broad commercial application.
For this broad discussion, renewable energy sources are categorized into four
broad classifications: biological (ethanol from plants, etc.), cyclical (solar, wind,
wave, geothermal, etc.), chemical (batteries, fuel cells, hydrogen cycle, etc.), and
nuclear (breeder fission, fusion, etc.) Techonomics balances the technology trends
with the economic realities of the marketplace to give insight into the near-term
future of this industry.
No comments:
Post a Comment